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ABSTRACT 

This study summarises the benefits of improving sea level forecasts for use in port operations from a 

shipping perspective. Maturation of operational sea level and ocean surface anomaly forecast 

services have provided the opportunity to utilise the skill that they offer to improve logistical 

operations at bulk goods terminals where short term Under Keel Clearance (UKC) are paramount 

to efficiency and safety. 

OMC International has been collaborating with the Bureau of Meteorology to evaluate the 

applicability of the OceanMAPS aggregate sea level forecasts that have now transitioned to an 

ongoing operational service. The development work to evaluate the forecasts was carried out on 

an experimental development version. The approach developed has proven to have the ability to 

utilise the improved accuracy of the new model.  

Furthermore, the availability of water level anomaly forecast models from other providers 

potentially offer non-correlated skill which can be incorporated into the model in an ensemble 

consensus style of assimilation. The different forcing sources, physical models and calculation 

architecture will be explored to understand the potential of combining heterogeneous numerical 

model forecasts in an operational setting. To that end, MetOcean Solutions Ltd have also provided 

operational water level forecasts to validate this hypothesis. 

This study outlines a stochastic framework for incorporating forecasts from multiple sources to 

maximise the benefits for the end user, foremost with the particular needs of deep draft vessel 

import and export shipping. 
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1 INTRODUCTION 

Bulk trade through bulk export ports can 

benefit from optimised vessel drafts derived 

from forecasts of environmental processes 

such as ocean swells and water levels, and 

thus improve cargo throughput.  

 

In this paper, OMC International aims to utilise 

existing sea level forecasting to cater to the 

needs of bulk port operations from an under-

keel clearance perspective. We will present a 

new approach that incorporates numerical 

forecasts with in-situ environmental 

observations on an operational basis.  

A good prognosis of water level allows 

operators to maximise the amount of cargo 

carried on each ship while maintaining safe 

vertical clearances. Every extra centimetre of 

draft mark translates to approximately 50 tons 

cargo for an average bulk carrier. This extra 

throughput can have significant flow-on 

economic benefits beyond the ship operator. 

However the ports needs to plan loading and 

sailing schedules and cargo capacity around 

these environmental restrictions.  

A typical bulk export operation sets a vessel’s 

cargo loading targets around 24 hours prior to 

sailing time, which is typically aligned with 

high tide. This is long enough for 

environmental conditions to change and 

observed water levels to deviate significantly 

from tide tables. Port operations rely on 

forecasts to plan and monitor these changes 

to ensure the appropriate loading of cargo to 

their vessels. The plan needs to account for 

maintaining safe under keel clearance (UKC) 

of their vessels during the transit from berth to 

deep water. Any adverse changes in water 

level predictions may result in sailing delays or 

cancelation, or even become a safety 

hazard.  

 

2 CHALLENGES IN PORT 

OPERATIONS 

Determining the maximum safe sailing draft of 

a vessel requires the accurate estimation of 

UKC for the planned sailing. Estimation of UKC 

is a multi-factored problem; variables include 

vessel characteristics (particulars and 

planned loading state, including draft), transit 

characteristics (e.g. channel depth the 

planned speed) and environmental 

conditions predicted for the time of sailing 

(wave, tides, and currents). To take these 

dynamic forcings into account, many 

Australasian ports use Dynamic UKC® 

(DUKC®) as a decision support system to 

predict UKC and safe draft and sailing time 

combinations. Tide and tidal anomaly 

forecasts intrinsically affect UKC, hence 

accurate water level predictions (tide plus 

anomaly) are a direct factor in the safe 

navigation of these depth-constrained 

waterways. Additionally, by reducing the 

uncertainty of water level forecasts, loading 

drafts can be proportionally increased, 

yielding significant economic benefits. 

2.1 ‘TIDES’ AND SEA LEVEL 

Variations in coastal water levels are 

generically referred to as ‘tides’. For the 

purposes forecasting these tides, useful 

distinctions can be made between sea level 

signals attributed to distinct oceanographic 

phenomena. The near ubiquitous 

decomposition of sea level of this nature is 

between the official harmonic tide 

predictions and the ‘tidal residual’ or 

anomaly.   

2.1.1 HARMONIC PREDICTIONS AND 

TIDE TABLES 

Tide tables are based on the harmonic 

analysis of long records of observed sea level.  

In Australia, the official National Tide Tables 

promulgated by the Australian Hydrographic  
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Service are primarily calculated by the 

Bureau of Meteorology Tidal Unit [1] using 

harmonic methods. 

As a sea level forecasting approach, 

standard harmonic methods are remarkably 

successful and robust. Tide table predictions 

can be produced years in advance and are 

fundamental to planning of port operations. 

Harmonic tide methods exploit the fact that 

at most coastal locations sea level variations 

are dominated by phenomena highly 

correlated with the relative motion of the 

Earth, Moon, Sun and other astronomical 

bodies.   This correlation reflects the significant 

role of gravitationally forced basin-scale long-

waves shoaling onto continental shelves.  It is 

notable however, that the relationship 

between observed sea level and tidal 

gravitation is complex and localised.   

Furthermore, not all of the signal regularly 

occurring at tidal frequencies, and usefully 

included in tide tables, are due to 

astronomical effects. 

Tide tables are stated to be valid for ‘average 

meteorological conditions’ [2] and storms are 

often a driver of relatively short-lived sea level 

deviations.   Storm impact need not be 

localised and shelf-scale phenomena can 

propagate deviations for many thousands of 

kilometres – notably along Australia’s 

southern shelves [3].  

 

Figure 1. Example of difference between observed sea 

level and official tide predictions in Southern Australia. 

Tide table predictions (black) are a good estimate of 

observed water level (blue), but the anomaly or ‘residual’ 

(green) can be a significant consider 

 

For ports to operate safely and efficiently 

using the harmonic tide predictions, they also 

need to account for such anomalies. It is 

common practice for ports to provide 

displays of predicted tides and observed 

water levels such as in Figure 1 so that the 

deviation is apparent to pilots and operators. 

User-focussed statistical approaches can be 

used to account for the deviation [4], but 

ideally the water level anomaly should be 

foreseen and factored into the sailing plans. 

Towards predicting water level anomaly, the 

heterogeneous phenomena that force the 

deviations need to also be predicted and 

understood; no trivial task. In this study we 

were fortunate to work with two sophisticated 

forecasting models operating at distinct 

spatial scales and offering distinct prognostic 

information. 

 

2.2 OPERATIONAL WATER LEVEL 

FORECASTS 

Numerical fluid dynamic models of ocean 

circulation have become increasingly viable 

for operational use in recent decades, largely 

due to the combined advances in 

computational capacity and real-time 

oceanographic observations.  

Global ocean ‘weather’ phenomena such as 

mesoscale eddies, seasonal mass distribution, 

coastal currents and shelf waves are 

represented by the Australian Bureau of 

Meteorology’s OceanMAPS system. Daily 

forecasts of the global ocean state for 7-day 

lead times are produced operationally; 

exploiting satellite observations and data 

assimilation techniques in a manner 

analogous to global weather forecasting 

systems [5] [6].   

    

From this foundational capacity, a coastal 

sea level forecasting service has been 

developed that aggregates the sea level 

anomaly forecasts with standard tides, 
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barometric pressure and other data to 

enable direct comparison to real-time tide 

gauge observations [7]. 

At the finer localised spatial scale, Met 

Ocean Solutions (MSL) have solved a limited 

area sea level model for the Port of Geelong.  

Their nested Regional Ocean Modelling 

System (ROMS) computes atmospheric 

forcing for the South Australian continental 

shelf [8]. A 5 km resolution parent nest 

covering most of the south coast of Australia 

provides shelf scale residual water levels for a 

local 300 m Port Phillip Bay nest (Figure 2).  The 

importance of the rather large parent nest lies 

in considering the remote effects of coastal 

trapped wave propagation from west to east 

triggered by low pressure systems 

propagating along the coast, which has 

proven to greatly improve the residual 

elevations accuracy. The atmospheric 

forcing consists of winds and mean sea level 

pressure derived from a customised MSL 9 km 

WRF model.  

These two modelling systems target quite 

distinct representations of oceanographic 

phenomena, and may offer somewhat 

complimentary prediction insight. The 

challenge in forecasting is optimising the 

skillset of multiple numerical models in one 

combined prediction.  

 

Figure 2. Spatial representation of the current ROMS 

model representing Victoria and Port of Geelong. The mid 

and right two lower panels show the high resolution of the 

model. 

2.2.1 SEA LEVEL FORECASTS FROM THE 

OCEANMAPS GLOBAL MODEL 

OceanMAPS provides a generalised best-

estimate of the 3D physical state of the global 

ocean state with a primarily blue-water target 

(aimed primarily at forecasting ocean 

circulation away from the coast), from which 

sea level anomaly can be output.   The spatial 

representation of the Australian coastline is 

discretised at ~10km and intentionally 

excludes embayments such as Port Phillip in 

Victoria as indicated by Figure 3. 

 

Figure 3.   Spatial representation of the coast by current 

version of OceanMAPS.  Blue lines with fine steps show 

coastline in the ocean model grid; orange lines at coarse 

steps indicate equivalent coastline within the 

atmospheric forcing model. Note that some 

embayments are intentionally excluded from the model. 

Regardless, the system provides skilful prognosis of sea 

level anomalies within the Bay at synoptic time scales.  

This reflects the significance of sea level variations at the 

open ocean entrance to the Bay. This skill is quantified 

against observed water levels at St Kilda by two distinct 



 

TEMPLATE_DOUBLE_COLUMN  RACHEL RYBAR 

 

measures in 

 

Figure 4 and  

Figure 5.
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Figure 4.   Normalised error distributions for 1-hourly sea 

level at St Kilda, Victoria.  Conventional tidal residual 

distribution (black) is relatively broad with notable tail at 

upper end.  Forecast errors for the OceanMAPS-based 

aggregated sea level shows a much narrower 

distribution.  As expected for skilful numerical forecasts, 

the peakedness of distribution decreases with forecast 

lead time.  

 

Figure 5.  RMS error growth in daily bins for OceanMAPS-

based aggregate sea level forecasts (red) is better 

relative to conventional tidal residuals 

(black).  Comparison with forecasts based on 

persistence of observed residual at forecast base time 

(blue) show notable cross-over points. Persistence on 

average out-performs within the first day, but rapidly 

decays in value.    

 

2.2.2 SEA LEVEL FORECASTS FROM 

ROMS MODEL  

The MSL storm surge forecast model has 

demonstrated good skill in representing the 

residual water levels at Geelong. Table 1 and 

Figure 6 show the results of the model 

validation against measurements. Results 

accuracy does not seem to degrade 

significantly ahead of cycle initialization 

times. In fact, there seems to be a trend of 

decreasing bias going forward in the forecast 

horizon, which could be related to slight 

dissipation trends either in the wind forcing or 

the hydrodynamic model itself. However, 

those trends are negligible compared to the 

overall bias.  

 

Figure 6. Box and whisker plots presenting the MSL model 

BIAS statistics along specific storm surge 3 cm bins 

considering the 29 analyzed forecast cycles. 

The model results are more consistent for 

negative surges (lower water levels), and the 

negative BIAS noted on these particular 

events means the predictions are on the 

conservative side, which is a good outcome 

for under keel clearance purposes. There are 

relatively more model fluctuations on the 

positive (higher water levels) surges. Although 

the data population is limited to the number 

of forecast cycles (29) analyzed, Figure 6 

offers a good indication of the degree of 

confidence that can be expected for 

different magnitudes of the storm surge.  
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Table 1. Summary statistics for MSL nowcast/forecast and 

measurements comparison at Pt. Richards. MAE stands 

for mean absolute error and RMSE stands for root mean 

square error. Units in [m]. The “T+?h” refers to combined 

forecast cycles time series starting from a time (in hours) 

ahead of the cycle initialization.  

 

2.3 MAINTENANCE 

The dependence of operational decision 

support systems such as the DUKC® on third-

party service providers raises issues when 

employing local statistical downscaling 

methods to match model forecasts with 

observation sites. Notably, routine upgrades 

to numerical models such as OceanMAPS or 

ROMS can introduce unexpected changes to 

the forecast’s characteristics (in relation to 

observations). This can cause the predictions 

used in the estimation of Dynamic UKC® to 

change, sometimes with deleterious impact 

on operations. 

To manage the impact of these routine 

upgrades, providers will usually allow a period 

of overlap to allow the forecast 

characteristics to be evaluated and changes 

to be made as required. A statistical 

persistence-based forecast model is also 

incorporated into the system as a ground-

truth and back-up model. 

 

3 ADAPTIVE FORECAST SKILL 

EVALUATION & ASSIMILATION 

In order to operationally handle model 

changes in forecast model characteristics 

more gracefully and with less impact on users, 

these changes should be automatically 

detected and the statistical model should 

adapt in a short time frame.  

A stochastic approach is used to construct an 

adaptive model, where the forecasts are 

characterised as probability distributions, and 

retrospectively compared to the distribution 

of the target observations. The stochastic 

approach means that the prediction can be 

solved statistically, but not deterministically.  

The new approach consists of two parts: an 

adaptive forecast skill evaluation to provide 

the basis for statistical assimilation, and 

recursive Bayesian estimation (BRE) to 

dynamically combine (assimilate) the 

forecasts. The BRE model compares the most 

recent assimilated prediction with new 

information from the forecast models [9] [10]. 

This creates a feedback loop, so that the 

model output is no longer a deterministic 

product of the measured and forecast data 

inputs. This method is applied to a statistical 

persistence as well as any available externally 

generated numerical forecasts, such as those 

from OceanMAPS and ROMS.  

Tidal residuals are modelled with a normal 

Gaussian distribution. Implicitly, this also 

assumes that the forecasts are normally 

distributed. With this assumption allowed, 

Student’s t-distribution can be used to 

increase the “uncertainty” based on sample 

size, which is particularly helpful when only a 

small numbers of forecast packets are 

available. The forecasts are thus weighted 

less strongly than a direct evaluation would 

imply. Similarly, by limiting the number of 

packets that are evaluated to the most 

recent (e.g. two months), the model responds 

to the skill of the forecasts adaptively so that 

if the model changes are incorporated 

accordingly [11] [12] [13]. 

 NowCast 
T+24

h 

T+28

h 

T+72

h 

T+96

h 
Ave. 

BIAS 
0.013 0.009 0.01 0.009 0.005 0.00

9 

MAE 
0.049 0.045 0.045 0.046 0.044 0.05

5 

RMSE 
0.065 0.055 0.056 0.058 0.054 0.05

8 
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4 RESULTS 

This study tested the robustness of the 

adaptive model for two months period. The 

test covers observations, astronomical tide 

and numerical forecast for the test period 

from for 2016-Oct-01 until 2016-Dec-02. This 

period observed 116 potential high water 

sailing opportunities.  

Figure 7 shows an example BRE application to 

numerical forecasts. The maroon and dashed 

green lines represent the forecasts from 

Bureau of Meteorology (OceanMAPS) and 

MSL (ROMS) for 14 Oct, 2016, respectively. In 

Figure 7both numerical forecasts under-

predict the observed residuals. BRE 

successfully detected and had elevated the 

transformed forecasts in the lower figure.  

 

Figure 7 shows an example time series of numerical 

forecast for 14 Oct 2016 and shows the updated BRE 

transformed forecasts from the Bureau of Meteorology 

and MSL. Note that the transformed forecasts are 

stochastic and illustrated as a range.  

The BRE transformed 64 Bureau of 

Meteorology packets and 56 MSL packets to 

be combined with the statistical predictions. 

For every new observation, a persistence 

based forecast is also produced. This 

persistence prediction is then assimilated with 

the numerical forecasts. Figure 8 shows an 

example assimilated prediction produced for 

14 October, 2016. The green shaded area 

shows the 1-sigma confidence interval. 

The assimilated water level predictions for 

Geelong are assessed using forecast horizon 

evolution. This approach assesses the 

potential impact of variations in water level 

predictions for the vessel’s scheduled transit 

as the time of sailing approaches. In this 

analysis, persistence predictions are used as a 

control case.  

 

Figure 8 shows an example assimilated prediction 

produced for 14 October, 2016. 

Numerical forecasts considerably improve on 

the persistence prediction in Figure 9.  The 

figure is a result of hourly issued conservative 

water level predictions for 116 different sailing 

times. Each prediction was aimed to be the 

best estimate. The assimilated forecast 

distribution is a lot tighter compared to the 

persistence one, thus the assimilation reduces 

the uncertainty in the predictions.  

Figure 9 compares BRE assimilated forecast against a 

persistence based model. Assimilation predictions 

include both the BoM and MSL numerical forecasts. 

Analysis consists of 116 Sails between 2016-Oct-01 and 

2016-Dec-02.
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In Figure 10, the range of prediction error as a 

function of forecast horizon is shown as 

shaded areas to compare the benefit of 

assimilating both the BoM and MSL forecasts 

(blue), as opposed to only having BoM 

forecasts (yellow) or only MSL (red). While the 

MSL forecasts introduce some positive bias, 

the complementary skill of the two forecasts 

reduce the range of uncertainty overall. 

When producing stochastic forecasts, the 

reduction in uncertainty is especially useful 

when producing conservatively biased 

estimates which are preferable for use in the 

DUKC® decision support system.   

 

Figure 10 shows forecast range and standard deviation 

from conservative predictions. The combined 

assimilation is compared against prediction that are 

assimilated with the Bureau of Meteorology and MSL 

forecasts only. Analysis consist of 116 Sails between 2016-

Oct-01 and 2016-Dec-02.  

Ideally combining multiple numerical 

forecasts that provide additional information 

should improve the overall prediction, and 

indeed this is shown in(Figure 10). The primary 

result is that the stochastic uncertainty is 

reduced with the two forecasts combined 

(with persistence) compared to either one 

alone. 

 

 

 

5 CONCLUSION 

This investigation concluded that a Bayesian 

recursive approach can evaluate and 

assimilate multiple forecasts of tidal residuals 

adaptively. The preliminary model 

successfully adapted seasonal changes in 

tidal residuals and improved water level 

predictions for operational use.  

The proof-of-concept model in this study 

successfully assimilates water level predictions 

with the aid of two numerical forecasts. This 

adaptive approach should prove to be 

invaluable for operational use. The approach 

successfully combined MSL’s Geelong and 

the Bureau of Meteorology’s Port Phillip Bay 

sea level anomaly forecasts.
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